Activity‎ > ‎

GAIA Seminar on Complex Analytic Geometry - Dr. Tobias Harz

posted May 22, 2016, 6:14 PM by Hyemin Shin
- Title: Richberg's smoothing procedure for continuous strictly plurisubharmonic functions

- Speaker: Dr. Tobias Harz (GAIA)

- Abstract: I will explain a classical result on smoothing of continuous strictly plurisubharmonic functions due to R. Richberg. In particular, I will show the following: Let $\Omega \subset \mathbb{C}^n$ be a domain and let $\varphi: \Omega \to \mathbb{R}$ be continuous and strictly plurisubharmonic. Then for every function $\lambda: \Omega \to (0,\infty)$ there exists a $\mathcal{C}^\infty$-smooth strictly plurisubharmonic function $\tilde{\varphi} : \Omega \to \mathbb{R}$ such that $\varphi < \tilde{\varphi} < \varphi + \lambda$.

- Place: GAIA Seminar Room (#106, Math Science bldg.)
- Date: 8 p.m. - 10 p.m on Thursday, 26 May 2016

Poster <---- click